紫外吸光度法测定食品、饮料和其他原料中的乙醛。
原理:
(醛脱氢酶)
Acetaldehyde + NAD+ + H2O → acetic acid + NADH + H+
试剂盒规格: 50次检测
方法:分光光度计,340nm
反应时间: ~4min
检测限制: 0.18 mg/L
适用样品:葡萄酒、香槟酒、啤酒、烈酒、白兰地、乳制品(如酸奶)面包、果汁、软饮料、可可粉、蔬菜和水果制品、咖啡和其他原料(如:生物培养基,样品等。)
方法认证: 该实验方法已通过MEBAK和瑞士认证。
优点:
不会浪费醛脱氢酶溶液(提供稳定的悬浮液)
价格低廉(每次检测成本)
所有试剂配置后的稳定性>2年
操作简单
网站提供Mega-Calc计算软件,处理原始数据更方便
包含标准品
Advantages
UV-method for the determination of Acetaldehyde in foodstuffs, beverages and other materials
Principle:
(aldehyde dehydrogenase)
(1) Acetaldehyde + NAD+ + H2O → acetic acid + NADH + H+
Kit size: 50 assays (manual) / 500 (microplate)
/ 500 (auto-analyser)
Method: Spectrophotometric at 340 nm
Reaction time: ~ 4 min
Detection limit: 0.18 mg/L
Application examples:
Wine, champagne, beer, liqueurs, brandy, dairy products (e.g. yogurt),
bread, fruit juices, soft drinks, cocoa, vegetable and fruit products,
coffee, and other materials (e.g. biological cultures, samples, etc.)
Method recognition:
Methods based on this principle have been accepted by MEBAK
Sometimes the addition of the last assay component can cause a small negative absorbance change in the blank samples due to a dilution effect, and in such cases it is recommended that the real absorbance values be used in the calculation of results.
The pH of the assay solution after the sample is added should be the same as that of the assay buffer that is supplied with the kit.
Low sample volumes (e.g. 0.1 mL) are not likely to affect the pH of the assay solution and therefore may not require pH adjustment.
Samples above 0.1 mL are more likely to affect the pH of the assay solution and therefore the pH of these samples should be adjusted as described in the data booklet, prior to addition to the assay.
If you suspect that the Megazyme test kit is not performing as expected such that expected results are not obtained please do the following:
Yes. Perchloric acid extraction can be used in conjunction with this kit, and should be performed as follows:
WARNING: If you have not worked with perchloric acid before, you must consult your safety officer for advice. Also, depending on the nature of the samples, it may be possible to reduce the concentration of perchloric acid, to for example 0.3 M (i.e. in the case of plasma). It is thus very important to determine if this is possible for each type of sample used, in order to reduce the risk from working with concentrated perchloric acid.
Liquid samples:
Solid samples:
The final pH of the kit assay after the sample is added should not change from what it should be (as stated in the kit for the assay buffer). If it does change then the sample will require pH adjustment. In most cases the sample volume being used is low relative to the final assay volume and in this case the pH of the kit assay is unlikely to be affected.
Where the amount of analyte in a liquid sample is unknown, it is recommended that a range of sample dilutions are prepared with the aim of obtaining an absorbance change in the assay that is within the linear range.
Where solid samples are analysed, the weight of sample per volume of water used for sample extraction/preparation can be altered to suit, as can the dilution of the extracted sample prior to the addition of the assay, as per liquid samples.
For users who are not familiar with how to use the Megazyme tests kits then it is recommended that they follow this example, e.g. D-Fructose/D-Glucose Assay kit K-FRUGL (http://secure.megazyme.com/D-Fructose-D-Glucose-Assay-Kit):
1. The kit components are listed on pages 2-3 of the kit booklet.
2. Prepare the kit reagents as described on page 3.
3. For separate measurements of glucose and fructose follow procedure A on page 4.
4. Pipette the volumes listed for water, sample, solution 1 and solution 2 into 3 mL, 1 cm pathlength cuvettes. Duplicate sample assays and duplicate blanks are recommended. Mix the contents of each cuvette by inversion (seal the cuvette using parafilm or a plastic cuvette cap – do not use a finger) then after ~3 min record the first absorbance reading of each cuvette at 340 nm (this is reading A1).
5. Then add suspension 3 and mix the contents of each cuvette by inversion. Incubate for 5 minutes then record the absorbance reading of each cuvette at 340 nm (this is reading A2). NB. It is essential that the reaction is compete. To assess this, record the absorbances at ~ 2 minute intervals and until the absorbance plateaus. A stable absorbance indicates that the reaction is complete. If the absorbance continues to increase then continue to record absorbances until it plateaus and only then record absorbance reading A2.
6. Then add suspension 4 and mix the contents of each cuvette by inversion. Incubate for 5 minutes then take absorbance reading of each cuvette at 340 nm (this is reading A3). NB. As above, assess that the reaction has completed by take subsequent readings at ~2 min intervals.
7. For simple, automated results analysis, input the absorbance readings (A1, A2, A3) for samples and blanks into the K-FRUGL MegaCalc.
To ensure that the assay is working, and being performed correctly it is recommend that the test is performed using the standard sample that is provided with the kit and to obtain the expected values before proceeding to test real samples.
It is recommend that new users also watch this video which highlights how to perform the assays.
Many of the other Megazyme test kits follow a similar format.
If there are any concerns with any kit components, the first thing to do is to test the standard sample (control sample) that is supplied with the kit and ensure that the expected value (within the accepted variation) is obtained before testing any precious samples. This must be done using the procedure provided in the kit booklet without any modifications to the procedure. If there are still doubts about the results using the standard sample in the kit then send example results in the MegaCalc spread sheet to your product supplier (Megazyme or your local Megazyme distributor).
The volume/weight of sample and total volume of the extract can be modified to suit the sample. This will ultimately be dictated by the amount of analyte of interest in the sample and may require empirical determination. For low levels of analyte the sample:extract volume ratio can be increased (i.e. increase the sample and/or decrease the total extraction volume).
Alternatively, for samples with low concentrations of analyte, a larger sample volume can be added to the kit assay. When altering the sample volume adjust the distilled water volume added to the assay accordingly so that the total assay volume is not altered.
The majority of the Megazyme test kits are developed to work in cuvettes using the manual assay format, however the assay can be converted for use in a 96-well microplate format. To do this the assay volumes for the manual cuvette format are reduced by 10-fold. The calculation of results for the manual assay format uses a 1 cm path-length, however the path-length in the microplate is not 1 cm and therefore the MegaCalc spreadsheet or the calculation provided in the kit booklet for the manual format cannot be used for the micropalate format unless the microplate reader being used can.
There a 3 main methods for calculation of results using the microplate format:
The kit assay may work for biological fluids assuming that inositol is present above the limit of detection for the kit after any sample preparation (if required). Centrifugation of the samples and use of the supernatant directly in the kit assay (with appropriate dilution in distilled water) may be sufficient. However, if required a more stringent sample preparation method may be required and examples are provided at the following link:http://www.megazyme.com/docs/analytical-applications-downloads/biological_samples_111109.pdf?sfvrsn=2
The test kit has not been tested using biological fluids as samples because it is not marketed or registered as a medical device. This will therefore require your own validation.
For samples with low concentrations of analyte the sample volume used in the kit assay can be increased to increase sensitivity. When doing this the water volume is adjusted to retain the same final assay volume. This is critical for the manual assay format because the assay volume and sample volume are used in the calculation of results.
The test kit is extremely accurate – at Megazyme the quality control criteria for accuracy and repeatability is to be within 2% of the expected value using pure analytes.
However, the level of accuracy is obviously analyst and sample dependent.
最有帮助的评价(0)
暂时还没有任何用户评论-